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SUMMARY

The extension of vibrational rolaxation oquations to tho caso of dogonerato

vibrational modes is given and the moaning of viborational transition probability
and the applicablo conditions for tho equations are disoussod.

I. INTRODUCTION

As far as vibrational relaxation equations are concerned, since

1936, there has been wide ranging research done on them L1-4].

Moreover, in the analysis of relaxation experimental data and the

study of the physical and dynamic phenomena included in relaxation

processes, they have achieved widespread use [5].

In the references, as far as the utilization of relaxation

equations which contain degenerative vibratory forms or modes are

concerned, there exist, throughout, points of confusion. For example,

references F4,6,7] all, in front of relaxation quantities, insert

various coefficients without having explained them. There is no way

to understand this. There are also a good number of people who make

use of relaxation equations which are approximations of such a nature

that they even include errors [8-11.] All of these things will carry

obvious impact [5,12] for the theoretical analysis of a number of

physical and dynamic questions concerning processes including

relaxation. Moreover, they will, when processing and making use of

relaxation data, create confusion.

---....2 The object of this article is to take relaxation processes and

extend or generalize them to each vibration mode existing in a

generalized degenerative situation, to clearly and precisely determine

the basic assumptions and appropriate conditions for the setting up of

relaxation equations, to understand the practical significance of

transitional probability, and to carry on a discussion of a number of

related questions. < '

II. FORMULAE

It is possible to take V-T and the vibrational relaxation

processes of V-V exchange between molecules and inside molecules,

and use a type of universal form to express:
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A[Al(v 1), A2(tv 2)] +D[B3('V3)) A [Al(vi,1 -n), A2(v 2 +1)) +B[B3(V~3+%') +,dE (0 %

Assume that the degree of degeneracy of the vibrational modes AlA2DB3

are, respectively, g.g 2 .gq3 . It is possible to take

the degenerative vibrational modes and see them as forming particle

vibrational modes from y, discrete energy intervals which are

equivalent to each other. Use All, -. A192., A21, *..A2g2; B31, .--B3g 3

to represent them.

If one gives consideration to all the (1) type reactions and the 2

effects of the particle number fll{A,) and its various types of

quantum distributions {VAI,~VI V, V as concerns the particle

vibrational modes for Ai vibration forms, it is possible to obtain

{t)Azq+LIVA 2g -4.VA2Q); {VB3r+4dVn3r--4' VRr}] XfiAL A2({VAP-AdVAIp},

{VA2q+IdVAIQ}) xn"'({v,+, 1 3 } P{~,~t~,V1

{VA2Q -- VA2q+'dVA.'Q}; {VUj3r--) Vl3+LIV/13r}] xn41.A2({VAXp},

(VAN)}) xn(L'r({vn3 ,}) +P[{VA1p+'dVAI,-* VA1P}, {VA22A-IVA2q -4* VA2Q}; (2)

{ViI3r - d1t3r-- V13) X
t

A1. A2 ({VA1,+ JVA1p},

{VA2qJVAIq}) xn',I?;({V,,3r-'4V,:3r}) -- P[{VAI,- V)Av+1VA~rp

{V.A-q -* VA2-4VA2q); {t)1f3r-- V t 34t't13rl] xnAI.A2({IJA1,,

{VA'Q}) xn~r.1({v,,3}) +.)

The collis9ion frequency L13] for a molecule A and a molecule

among these is

ZAN (8xkTpLAb) 'alo (3)
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• represents the particle numbers that satisfy the corresponding

quantum number distribution. The superscript (:(V)) stands for the

particle number inside of a unit volume. "At can be any indicated

group of A molecules, and, for example, since it can be the

molecules within a unit volume, it can also be the Aj molecules

within a unit mass of a mixture. The transitional quantum number in

equation (2) must satisfy

Within the . } inside of equation (2), one finds included all the

forms that satisfy (4). Their number is

IT ("+ P) J1(+q) Ff (,6 ).
9,(92(g,- 1 ! (g,-1) ! (93-1)!]

When the degree of degeneracy of a given vibrational mode is 1, the

contributing quantities corresponding with the inside of the equation

are also 1.

Under an assumption of particle resonance, the vibrational energy

for the Al vibrational mode is

E,,- -. . V ,,,,/,,,, xnA,({V,,,,}) (6)
IIll P -2,t \P

In addition, it is also possible to take equation (2) and change it to

be of the form dEAh/d . Making use again of the principle of

equilibrium to the finest detail L1-3J

-P7'.7"xP[VA,,-V t 4 ,-,6 4 ,,}, {V,.V-4 -VA2q+4VA q}; {9,3r- -Vh,+ 4
V,,.]

3k
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i.

In this

- oxp( - h,/k') ()-8)

and along with the Landau-Teller Principle of collision transitions

[1,3,14]

P [ {iiu+ A , , } , {! , " o V + 9, ,A2 { V 3, : "- A *+ 5}]. -

S[(dVAII) , (I VA2,) ! .... ( ,,,) 3 -'

[ ,A,, + "" (9)
XII --("II+ V) I I (-,Ix+q)" I I ('-,,+r)'"J 

VA 11{a , - 0). (0o-l' -dV,j;o 1o v.o, ]

Moreover, assume that. in the interior of each vibrational mode

(including the various particle vibrational modes) there exists a

quasi-equilibrium distribution. These have the same 3

characteristic temperature T., that is,

SA(.-A2(.VAI,, ..A2%)

l [ -op~h ,,!il'' )] "[1-oxp~lw,/kT,)].xoxp[ v,,, 1  (10)

Q.VAq hV2 /kT2]

one can simplify and get

dEl=ZADI7vjWNAN);' X P[A (mI-4-O),A2O*)
r

")] 
i"

I _P

- '({ A. ,T) -L"V[l ox (h / T] x -n(2 ')]h* /T (12I)
r" A I P2 (I EE ., I
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oxp (vil' 1k') -1 (1 3)

Its equilibrium value is

E 4 1 (T) - qjN AhVj
oXp (h,,,/,I') -1 (14)

Expressions for FA2, and ED are similar. The transition

probability in equation (12) is

P[AlY-*O), A2(0-+4 ; }OB(0 A )]

IP {,AI ,,-.,. 0, {o -,. ,,,,,, {0 -.,. ,d ,. V(311

In this is the summation of all the forms that satisfy (4).

It is possible, in the same way, to write out an expression for

an~d ut ,: . ilar , fo s. ""';Cover, it ic possible to 5

conveniently generalize dE to more complex relaxation processes.
di

III. DISCUSSION

1. THTE+PLOYIEiT OF APPROI[MATIONS IN DERIVATION PROCESSES

in the same way as iT 1], and SSH 2] theory, in derivations, we

made use of three approximations. One is the assumption of resonant

particles. Two is the recognition of the existence of a

quasi-equilibrium distribution in the interior of the vibration mode.

Three is that we made use of mutually derived formulas for vibrational

transition probabilities. As concerns the mutually derived formulas

for vibrational transition probabilities, recently, Ma Xingxiao has

done a specialized analysis L141, and he recognizes that these

formulas are capable of being used in energy transfer processes

including vibration and rotation as well as in any form of mutual
idteract-Lon. ne :tso rezogn~zes that the first oruer perturbation

theory which was made use of in the derivation of the mutually derived

formulas cannot often be used on transition probabilities. in

derivations, all the other approximations included correspond to the

resonant particle approximation.

5
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Non-resonant particle energy levels can be expressea s 1 5J

Non-resonant forms, in general, are capable of using a comparison of

the second term and first term values x°( +-) in order to

estimate. We took several kinds of numerical data for representative

molecules and arranged them in Table 1. From this table one can see

that, at the relatively high energy level * =5, the non-resonant

nature is generally 1-4%. Moreover, molecules which contai hydrogen

are capable of re~ching from 10-20%. However, the non-resonant nature

within the systemn manifests effects which are of a size which is

related to the actual accumulation number for the energy levels.

Because of this, even if the non-resonant nature is very strong, it is

only necessary for the energy level particle number to be extremely

small, and this -ype of non-resonant nature still has no real effect

on te system. Taking these two types of factors and considering them R

in combination, the resonant particle approximation, even if one is

considerinL molecules which contain hydrogen, under several thousands

of de5rees of temperature, still does not fail to be a good

approximation.

As far as the assumption theft there exists within vibrational

modes a quasi-equilibrium distribution is concerned, this is basea on

the existenc - of resonant exchange between different vibrational

energy levels within vibration modes. Even if there exists a

non-resonant nature, there is still an extremely good approximation to

resonant exchange. Its speed must be several orders of magnitude

larger [16] than the relaxation speeds between the generality of

vibrational modes. Therefore, eliminating the involvement of the

question of extremely fast processes (such as strong, short pulse

lasers), i+ is possible, in all cases, to recognize that the

assumption of quasi-equilibrium is quite a good approximation.
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5000K L00( JOK3.

N-X2 23S9.61 14.4,6 3.4% 0.038 2.8 x 10-' 2. 1 x Iu0'4

H3XIZ; 4395.2, 117.99s 14.8%,o 0.0049 1.7 x 10 -
6 3.1 x 10 - .,

6-) 672.2 1.3 1.2% 0.3S4 0.091 1.2 x 10-7

CO. 2396.4 12.5 2.9% 0.037 2.6 x IU- 4  1.1 x 10
- 74

--f" Oi a y--/ ., ttVi x.(V+l)

1. Table 1 Caculations for Non-Resonant Effects on Several Types of

,4olecul.ps When 5 2. Molecule 3. Comp-arison of Concentration

;umber2 for , = 5 Energy Lvti and = 0 Energy Level 4. Due to the

fart th't th- vibrtional mode is second degree degenerative, the

relatlve or specific value is X.(V+-1)
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2. ON "CROSS OVER" TRAiiSITIONS

In the derivation, in actuality, we did not include yet another

approximation; that is, we did not consider "cross over" transitions.

Originally, in order to show the overall transitional quantum number

for vibrational modes Vthat is, satisfying equation (4)], it was

possible, from the "cross over" transitions of a number of vibrationLi Y.1

modes and the transitional forms for other particle vibrational modes

in the corresponding directions to make them up. For example, the

second degree degenerative vibration mode for the transition 0 -> 1,

besides the fact that it is possible to form it from tne two particle

vibrational mode for the 0 -> 1 and 0 -> 0 transitions, may also be

formed from 0 ->2 And 1 -> 0 and even from 0 -> 3 and 2 -> 0.

According to SS1 theory 2], the mutual effect form for molecules

is the index exclusion form
I

.%VAM(SA4) ..-. a,(1 7)

In this, S41 is the vibration characteristic coordinate, and Af,

is the potential parameter. The transition matrix elements are L3]

<i 1V.A(SA,) ji+1n>-m C ''"a= [ (i ) (i +i-1)'"..(i +1) ] I .

<tiVA,(SA,) li-M> C , ( .( -M+

in this, aAE,(LAI,,A./h) and PA( are the vibration particles'

reduced mVe(. , is the vibration characteristic frequen1 cy. And, C

is a constant. The transitional probability is in direct

proportion to the product of the inatrix element square. Taking the 0

-> 1 transition as an example, we have

.P[A11(0--.2), A12(1-+O)] -

."P[Al1(0-+1), A12(0- 0) ] 8a" -"

"e,

7oreover, for a=20A,6=31 7 L17], tnis relative value i.j

approx-m-tely 6x O Because of this, it is reasontbLe to ignore

"cross over" transition.

I8 + •
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3. COMPARISON WITH PARTICLE NUMBER EQUATIONS

There are people who make use of the particle number equations

pertaining to several of the lowest energy levels in order to describe

relaxation processes. From the derivation process, it is possible to

know that the energy relaxation equations here have taken into

consideration all the energy levels for all the energy transfer

processes for the same type of mode. Moreover, at the same time,

they consider upward and downward transitions. Therefore, the results

are necessarily even more universal. Moreover, as far as particle

number equations are concerned, most of them are only capable of

considering a few of the lowest laser states. They are not able to

include all the Drocesses of the same type for all the energy levels.

When the energy transfer speed within the vibrational mode is far

greater than the process being considered (From 1-16], this relative

value can often reach 10' Obviously, this is a very large

omission.) However, if the process speed being handled is very large,

for example, a water relaxation process, the transitional

probabilities are capable of reaching 10-1 order of magnitude.

First order perturbation theory loses its effect. The transfer speeds

within the vibrational modes also will not again have speeds far

larger than those for the processes being handled. The assumption of

quasi-pquiirium within vibrational modes may possibly no longer be

appropriate. And, it is o loriger advantageous to use energy

relaxation equations. Moreover, it is necessary to make it possible

to use particle number equations 718]. -
NP
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